Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts

نویسندگان

  • Thomas S Churcher
  • Robert E Sinden
  • Nick J Edwards
  • Ian D Poulton
  • Thomas W Rampling
  • Patrick M Brock
  • Jamie T Griffin
  • Leanna M Upton
  • Sara E Zakutansky
  • Katarzyna A Sala
  • Fiona Angrisano
  • Adrian V S Hill
  • Andrew M Blagborough
چکیده

Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative in vitro Study of the Effect of Eosin B on Asexual Blood Stages and Gametocyte of Plasmodiun falciparum

Background and Objective: Malaria is one of the most life-threatening infectious diseases worldwide. Transmission of the parasite from human to vector mosquitoes is carried out by the gametocyte of the Plasmodium parasite, while these cells are not involved in the symptoms of the disease. The control of the human to mosquito  transmission stage of the parasite life cycle by antigametocyte drugs...

متن کامل

A Population Model of Malaria Transmission According to Within-Host Parasite Dynamics

We present a theoretical study of the spread of multiple strains of malaria according to within-host parasite dynamics. The disease transmission mechanism is modeled in two parts. Transmission from the host to a mosquito depends upon the host's parasite density and a transmission-to-vector probability function, while transmission from mosquitoes to new hosts depends upon a general transmission ...

متن کامل

Human-to-mosquito transmission efficiency increases as malaria is controlled

The efficiency of malaria transmission between human and mosquito has been shown to be influenced by many factors in the laboratory, although their impact in the field and how this changes with disease endemicity are unknown. Here we estimate how human-mosquito transmission changed as malaria was controlled in Dielmo, Senegal. Mathematical models were fit to data collected between 1990 and the ...

متن کامل

Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector

Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained mo...

متن کامل

The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae.

It has often been suggested that vector-borne parasites alter their vector's feeding behaviour to increase their transmission, but these claims are often based on laboratory studies and lack rigorous testing in a natural situation. We show in this field study that the malaria parasite, Plasmodium falciparum, alters the blood-feeding behaviour of its mosquito vector, Anopheles gambiae s.l., in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017